34 research outputs found

    On the Formalisation of the Metatheory of the Lambda Calculus and Languages with Binders

    Get PDF
    Este trabajo trata sobre el razonamiento formal veri cado por computadora involucrando lenguajes con operadores de ligadura. Comenzamos presentando el Cálculo Lambda, para el cual utilizamos la sintaxis histórica, esto es, sintaxis de primer orden con sólo un tipo de nombres para las variables ligadas y libres. Primeramente trabajamos con términos concretos, utilizando la operación de sustitución múltiple de nida por Stoughton como la operación fundamental sobre la cual se de nen las conversiones alfa y beta. Utilizando esta sintaxis desarrollamos los principales resultados metateóricos del cálculo: los lemas de sustitución, el teorema de Church-Rosser y el teorema de preservación de tipo (Subject Reduction) para el sistema de asignación de tipos simples. En una segunda formalización reproducimos los mismos resultados, esta vez basando la conversion alfa sobre una operación más sencilla, que es la de permutación de nombres. Utilizando este mecanismo, derivamos principios de inducción y recursión que permiten trabajar identificando términos alfa equivalentes, de modo tal de reproducir la llamada convención de variables de Barendregt. De este modo, podemos imitar las demostraciones al estilo lápiz y papel dentro del riguroso entorno formal de un asistente de demostración. Como una generalización de este último enfoque, concluimos utilizando técnicas de programación genérica para definir una base para razonar sobre estructuras genéricas con operadores de ligadura. Definimos un universo de tipos de datos regulares con información de variables y operadores de ligadura, y sobre éstos definimos operadores genéricos de formación, eliminación e inducción. También introducimos una relación de alfa equivalencia basada en la operación de permutación y derivamos un principio de iteración/inducción que captura la convención de variables anteriormente mencionada. A modo de ejemplo, mostramos cómo definir el Cálculo Lambda y el sistema F en nuestro universo, ilustrando no sólo la reutilización de las pruebas genéricas, sino también cuán sencillo es el desarrollo de nuevas pruebas en estos casos. Todas las formalizaciones de esta tesis fueron realizadas en Teoría Constructiva de Tipos y verificadas utilizando el asistente de pruebas AgdaThis work is about formal, machine-checked reasoning on languages with name binders. We start by considering the ʎ-calculus using the historical ( rst order) syntax with only one sort of names for both bound and free variables. We rst work on the concrete terms taking Stoughton's multiple substitution operation as the fundamental operation upon which the ά and ß-conversion are de ned. Using this syntax we reach well-known meta-theoretical results, namely the Substitution lemmas, the Church-Rosser theorem and the Subject Reduction theorem for the system of assignment of simple types. In a second formalisation we reproduce the same results, this time using an approach in which -conversion is de ned using the simpler operation of name permutation. Using this we derive induction and recursion principles that allow us to work by identifying terms up to -conversion and to reproduce the so-called Barendregt's variable convention [4]. Thus, we are able to mimic pencil and paper proofs inside the rigorous formal setting of a proof assistant. As a generalisation of the latter, we conclude by using generic programming techniques to de ne a framework for reasoning over generic structures with binders. We de ne a universe of regular datatypes with variables and binders information, and over these we de ne generic formation, elimination, and induction operations. We also introduce an ά equivalence relation based on the swapping operation, and are able to derive an -iteration/induction principle that captures Barendregt's variable convention. As an example, we show how to de ne the ʎ calculus and System F in our universe, and thereby we are able to illustrate not only the reuse of the generic proofs but also how simple the development of new proofs becomes in these instances. All formalisations in this thesis have been made in Constructive Type Theory and completely checked using the Agda proof assistan

    Inferencia de tipos de sesión

    Get PDF
    Incluye bibliografía.El problema que se aborda en la tesis es el desarrollo de un algoritmo que realice inferencia de tipos para sistemas de tipos de sesión. Para ello, se consideran los sistemas existentes en la literatura, se propone una variante que consiste en un fragmento suficientemente representativo y se lo extiende con esquemas de tipos. Para este sistema se desarrolla un algoritmo de inferencia de tipos. Tanto la propuesta de un sistema de tipos de sesión con esquemas de tipos como el desarrollo del algoritmo de inferencia para el mismo son contribuciones originales en el área.ANII - BE_MAEN_2009_0_1476

    Alpha-Structural Induction and Recursion for the Lambda Calculus in Constructive Type Theory

    Get PDF
    We formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e., with only one sort of names) where alpha-conversion is based upon name swapping as in nominal abstract syntax. The principles allow to work modulo alpha-conversion and implement the Barendregt variable convention. We derive them all from the simple structural induction principle on concrete terms and work out applications to some fundamental meta-theoretical results, such as the substitution lemma for alpha-conversion and the lemma on substitution composition. The whole work is implemented in Agda

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL

    Alpha-Structural Induction and Recursion for the Lambda Calculus in Constructive Type Theory

    Get PDF
    AbstractWe formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e., with only one sort of names) where α-conversion is based upon name swapping as in nominal abstract syntax. The principles allow to work modulo α-conversion and implement the Barendregt variable convention. We derive them all from the simple structural induction principle on concrete terms and work out applications to some fundamental meta-theoretical results, such as the substitution lemma for α-conversion and the lemma on substitution composition. The whole work is implemented in Agda

    Principles of Alpha-Induction and Recursion for the Lambda Calculus in Constructive Type Theory

    No full text
    We formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e., with only one sort of names) where alpha-conversion is based upon name swapping as in nominal abstract syntax. The principles allow to work modulo alpha-conversion and implement the Barendregt variable convention. We derive them all from the simple structural induction principle on concrete terms and work out applications to some fundamental meta-theoretical results, such as the substitution lemma for alpha-conversion and the lemma on substitution composition. The whole work is implemented in Agda

    Principles of Alpha-Induction and Recursion for the Lambda Calculus in Constructive Type Theory

    No full text
    We formulate principles of induction and recursion for a variant of lambda calculus in its original syntax (i.e., with only one sort of names) where alpha-conversion is based upon name swapping as in nominal abstract syntax. The principles allow to work modulo alpha-conversion and implement the Barendregt variable convention. We derive them all from the simple structural induction principle on concrete terms and work out applications to some fundamental meta-theoretical results, such as the substitution lemma for alpha-conversion and the lemma on substitution composition. The whole work is implemented in Agda
    corecore